Alarm Systems

large product photo

large product photo

large product photo

  More information on alarm systems

Alarm Systems are electrical house alarms designed to alert the owner to danger.

Sensors are connected to a control unit via a low-voltage hardwire or narrowband RF signal which is used to interact with a response device. The most common security sensors indicate the opening of a door or window or detect motion via passive infrared (PIR).

New construction systems are predominately hardwired for economy. Retrofit installations often use wireless systems for a more economical and quicker install. Some systems serve a single purpose of burglary or fire protection.
Combination systems provide both fire and intrusion protection. Sophistication ranges from small, self-contained noisemakers, to complicated, multi-zoned systems with color-coded computer monitor outputs.


These types of sensors are designed for indoor use. Outdoor use would not be advised due to false alarm vulnerability and weather durability.

Passive Infrared Detectors
The passive infrared detector (PIR) is one of the most common detectors found in household and small business environments because it offers affordable and reliable functionality. The term passive means the detector is able to function without the need to generate and radiate its own energy (unlike ultrasonic and microwave volumetric intrusion detectors that are “active” in operation). PIRs are able to distinguish if an infrared emitting object is present by first learning the ambient temperature of the monitored space and then detecting a change in the temperature caused by the presence of an object. Using the principle of differentiation, which is a check of presence or no presence; PIRs verify if an intruder or object is actually there. Creating individual zones of detection where each zone comprises one or more layers can achieve differentiation. Between the zones there are areas of no sensitivity (dead zones) that are used by the sensor for comparison.

Ultrasonic Detectors
Using frequencies between 25 kHz and 75 kHz, these active detectors transmit ultrasonic sound waves that are inaudible to humans. The Doppler shift principle is the underlying method of operation, in which a change in frequency is detected due to object motion. This is caused when a moving object changes the frequency of sound waves around it. Two conditions must occur to successfully detect a Doppler shift event:

  • There must be motion of an object either towards or away from the receiver.
  • The motion of the object must cause a change in the ultrasonic frequency to the receiver relative to the transmitting frequency.

The ultrasonic detector operates by the transmitter emitting an ultrasonic signal into the area to be protected. The sound waves are reflected by solid objects (such as the surrounding floor, walls and ceiling) and then detected by the receiver. Because ultrasonic waves are transmitted through air, then hard-surfaced objects tend to reflect most of the ultrasonic energy, while soft surfaces tend to absorb most energy. When the surfaces are stationary, the frequency of the waves detected by the receiver will be equal to the transmitted frequency. However, a change in frequency will occur as a result of the Doppler principle, when a person or object is moving towards or away from the detector. Such an event initiates an alarm signal. This technology is considered obsolete by many alarm professionals, and is not actively installed.

Microwave Detectors
This device emits microwaves from a transmitter and detects microwaves at a receiver, either through reflection or reduction in beam intensity. The transmitter and receiver are usually combined inside a single housing (monostatic) for indoor applications, and separate housings (bistatic) for outdoor applications. By generating energy in the microwave region of the electromagnetic spectrum, detector operates as an active volumetric device that responds to:

  • A Doppler shift frequency change.
  • A frequency phase shift.
  • A motion causing reduction in received energy.

Photo-Electric Beams
Photoelectric beam systems detect the presence of an intruder by transmitting visible or infra red light beams across an area, where these beams maybe obstructed. To improve the detection surface area, the beams are often employed in stacks of two or more. However, if an intruder is aware of the technology’s presence, it can be avoided. The technology can be an effective long-range detection system, if installed in stacks of three or more where the transmitters and receivers are staggered to create a fence-like barrier. Systems are available for both internal and external applications. To prevent a clandestine attack using a secondary light source being used to hold the detector in a ‘sealed’ condition whilst an intruder passes through, most systems use and detect a modulated light source

Glass Break Detectors
The glass break detector may be used for internal perimeter building protection. When glass breaks it generates sound in a wide band of frequencies. These can range from infrasonic, which is below 20 Hertz (Hz) and can not be heard by the human ear, through the audio band from 20 Hz to 20 kHz which humans can hear, right up to ultrasonic, which is above 20 kHz and again cannot be heard. Glass break acoustic detectors are mounted in close proximity to the glass panes and listen for sound frequencies associated with glass breaking. Seismic glass break detectors are different in that they are installed on the glass pane. When glass breaks it produces specific shock frequencies which travel through the glass and often through the window frame and the surrounding walls and ceiling. Typically, the most intense frequencies generated are between 3 and 5 kHz, depending on the type of glass and the presence of a plastic interlayer. Seismic glass break detectors “feel” these shock frequencies and in turn generate an alarm condition.


These types of sensors would be found most of the time mounted on fences or installed on the perimeter of the protected area.
Passive Magnetic Field Detection
This buried security system is based on the Magnetic Anomaly Detection principle of operation. The system uses an electromagnetic field generator powering with two wires running in parallel. Both wires run along the perimeter and are usually installed about 5 inches apart on top of a wall or about foot buried in the ground. The wires are connected to a signal processor which analyze any change in the magnetic field. This kind of buried security system sensor cable could be buried on the top of almost any kind of wall to provide a regular wall detection ability or be buried in the ground.

  • pros: Very low false alarm rate, can be put on top of any wall, very high change to detect real burglars.
  • cons: Can't be installed in near high voltage line or radars and airports.

conclusion: The best solution in the buried sensors range.

Microwave Barriers
The operation of a microwave barrier is very simple. This type of device develop an electromagnetic beam using high frequency waves that passes from a transmitter to a receiver, creating an invisible but sensitive protection wall. When the receiver detects a difference of condition within its beam (and hence a possible intrusion), begins a detailed analysis of the situation that, if considered a real intrusion, it provide an alarm signal that can be treated in analogue or digital form.

Microphonic Systems
Microphonic based systems vary in design but each is generally based on the detection of an intruder attempting to cut or climb over a chainwire fence. Usually the microphonic detection systems are installed as sensor cables attached to rigid chainwire fences, however some specialised versions of these systems can also be installed as buried systems underground. Depending on the version selected, it can be sensitive to different levels of noise or vibration. The system is based on coaxial sensor cable with the controller having the ability to differentiate between signals from the cable or chainwire being cut, an intruder climbing the fence, or bad weather conditions. The systems are designed to detect and analyse incoming electronic signals received from the sensor cable, and then to generate alarms from signals which exceed preset conditions. The systems have adjustable electronics to permit installers to change the sensitivity of the alarm detectors to the suit specific environmental conditions. The tuning of the system is usually accomplished during commissioning of the detection devices.

  • pros: very cheap, very simple configuration, easy to install.
  • cons: some systems has a very high rate of false alarms because some of these sensors has sensitivity problems as they might be too sensitive.

conclusion: If you need a fence mounted sensor and you willing to add some more money for a reliable system go with the Vibration system.